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Solution I Create a POS Tagger that can accept software sdmay21-35

documentation in the form of HTML files, trained on the back of a

mix of automatic and manual tagging of Software documentation. Faculty Advisor | Ali Jannesari

Graduate Supervisor | Hung Phan

Requirements Engineering Constraints

Works within, and adhere to the requirements of, coreNLP
Functional Limited time resources for engineering work

Create a corpus of tagged software documentation
Augment Stanford coreNLP model

Tag software documentation with a greater accuracy than a
default English tagger would

Operating Environment
JDK 15 (or SE 16) & Python 3.8 or above

Non-Functional Intended Users
Accessible to an average user of general software packages Researchers, developers, and students looking to combine
Tag thousands of tokens in a matter of seconds, not minutes natural language processing and software documentation.
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Technical Details: Modules .
AutoTagging
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Integration Testing | Our project required heavy integration testing as you can see the 5 distinct modules we used
above. Ensuring all modules connect fluidly and bug free was very important.

Model Accuracy I We have created custom testing methods to test accuracy regardless of model used. Our current
best result is ~55% accuracy using the base conditional random field training from Stanford coreNLP.

External Image Sources: A: nip.stanford.edu, B: https://lope.linguistics.ntu.edu.tw/courses/corpusling2015/lectures/01/index.html,




