A Part of Speech Tagger for Software Documentation

Joseph Naberhaus | Project Lead

Problem | Current industry standard part of speech (POS) James Taylor | Computational Linguistics SME
tagging solutions do not have any means to tag software Austin Boling | Meeting Facilitator
documentation due to the intermixing of natural language and Ekene Okeke | Report Coordinator
code. Ahmad Alramahi | Lead Developer
Ethan Ruchotzke | Documentation Manager

Solution I Create a POS Tagger that can accept software sdmay21-35

documentation in the form of HTML files, trained on the back of a

mix of automatic and manual tagging of Software documentation. Faculty Advisor | Ali Jannesari

Graduate Supervisor | Hung Phan

Requirements Engineering Constraints

Works within, and adhere to the requirements of, coreNLP
Functional Limited time resources for engineering work

Create a corpus of tagged software documentation
Augment Stanford coreNLP model

Tag software documentation with a greater accuracy than a
default English tagger would

Operating Environment
JDK 15 (or SE 16) & Python 3.8 or above

Non-Functional Intended Users
Accessible to an average user of general software packages Researchers, developers, and students looking to combine
Tag thousands of tokens in a matter of seconds, not minutes natural language processing and software documentation.
/\ METIRE NS Standards
F”&“Sh "’lan ugl{ le ISO-IEC 12207 | Software Life Cycle - Longevity of project
us bode examp la ISO-IEC 9001 | Quality Management - Quality of project
Stanford] NLP ¥ corpor? 1= "“""5‘”(ECMA 494 | JSON - Data transfer in pipeline
Design Approach New Tag Set
.. 40 Original Penn TreeBank Tags [NN = noun, VBZ = verb]
Training A New Model 30 New Software POS Tags [<val> = value, <type> = type]
1. Scrape the documentation ~5 HTML Tags [<code> = HTML code tag]
2. Parse the documentation
3. Tokenize and sentence split [)
the documentation Software
4. Automatically tag the 5 R e
documentation, use manual ‘
intervention for clean up V= 2\ E 2 Ve)
5. Train the model HTML Scraper —» Univ;rsal HTML | || Tokenizer &
arser Sentence Splitter
Results in: trained CRF model - 7 i '8 ~
for tagging software docs /\
Tagging New i R " Software
Software Documentation Ma.';:a":‘r"m _.» Documentation
1. Parse the new documentation e e iy /./ . POSModel
2. Tokenize and sentence split l / l
the documentation / ™ J 4 B
3. Consult model POS Model 1. g Tagged Software
Trainer Documentation
o J - y,

Results in: fagged docs

Technical Details: Modules .
AutoTagging

Automatically tags

when confident, manual POSModel

tagqging GUI for -
HTML Parser clean-un Trains a CRE from
HTML Parse HTML Based on les, 1ags new

documentation, and

Scraper a tag whitelist . . Using stanford.nlp,
P Tokenization P tests accuracy

_ Tokenizes and sentence Using stanford.nlp,

based on rules commons & log4y

Integration Testing | Our project required heavy integration testing as you can see the 5 distinct modules we used
above. Ensuring all modules connect fluidly and bug free was very important.

Model Accuracy I We have created custom testing methods to test accuracy regardless of model used. Our current
best result is ~55% accuracy using the base conditional random field training from Stanford coreNLP.

External Image Sources: A: nip.stanford.edu, B: https://lope.linguistics.ntu.edu.tw/courses/corpusling2015/lectures/01/index.html,

