
SD May 2021 Group 35
A Part of Speech Tagger for Software Documentation

Faculty Advisors and Group Members

Faculty Advisors

● Ali Jannesari - Faculty Advisor
● Hung Phan - Graduate Supervisor

Group Members

● Joseph Naberhaus - Project Lead (naberj@iastate.edu)
● James Taylor - Computational Linguistics Subject Matter Expert
● Austin Boling - Meeting Facilitator
● Ekene Okeke - Report Coordinator
● Ahmad Alramahi - Lead Developer
● Ethan Ruchotzke - Documentation Manager

Quick Definitions

PoS: Parts of Speech (Noun, verb, adjective, infinitive, punctuation, etc).

Tags: Symbols and abbreviations to represent PoS, associated with a text token.

Model: An abstract function that maps PoS tags to input tokens.

NLP: Natural Language Processor. Program which takes input, uses a tokenizer,
and uses the model to produced PoS tagged output.

Diagrams and Design

System Design - Pipeline

Pipeline - HTML Scraper and Parser

Results in:

Pipeline - Tokenizer & ssplit

Results in:

System Design - Tagging
Results in:

Intermediate:

System Design - TrainingInput:

Output:

System Design - Pipeline

Pipeline Review - Data to be tagged

The function takes an array of size n, where each element e ∊ ℕ, and outputs their
sum.

Input: a = [12, 3, 7]

sumArray(a)

Output: 22

Pipeline Review - Splitting the data into tokens

The function takes an array of size n , where each element e ∊ ℕ , and outputs
their sum .

Input : a = [12 , 3 , 7]

sumArray (a)

Output : 22

Pipeline Review - Tagging the data

The function takes an array of size n, where each element e ∊ ℕ, and outputs their sum.

DT NN VBZ DT NN IN NN <var>, WRB DT NN <var> SYM SYM , CC NNS PRP$ NN .

Input : a = [12 , 3 , 7]

NN : <var> <gets> <[> <value> <,> <value> <,> <value> <]>

sumArray (a)

<func> <(> <param> <)>

Output : 22

NN : <value> **Our own tags are enclosed within angle brackets < >

Current Technical Challenge 1: Low Model Accuracy

● First iteration of the model is about ~55% accurate...
● Potential solutions:

○ *Improve current model*
■ Understanding Conditional Random Fields Better
■ Tons of different properties to experiment with
■ Setting hard rules

○ Try a range of models
■ CRFClassifier (current)
■ Maximum Entropy Markov Model
■ Trigrams

○ Sample from more training data (More English heavily specifically)
○ Improve current dataset

■ Remove errors
■ *Condense english and code tags*

● . vs <.>, LRB vs <(>

Current Technical Challenge 2: Lack of Training Data

● Extremely fast scraping and tokenization
○ All automated from a set of URL
○ Easy to get large amounts of data

● Extremely slow manual tagging
○ Autotagged english portions
○ Roughly a half hour per document

■ Starter was 100 documents, which took a week and a half to complete
● Potential Solutions

○ Usage of tighter code coverage tags will reduce the manual tagging significantly
○ Useful tools like the patcher make mass tagging quicker

Development Standards

ISO-IEC: 12207 - Software Life Cycle:
Divides development into three stages: Agreement, Organizational, Technical
Helped us divide up work in the planning stages of development

ISO-IEC: 9001 - Quality Management:
Used in conjunction with Agile Software development to ensure our product meets the client’s specifications.

ECMA: 404 - JSON:
Used as the data transfer format between stages in the pipeline

Engineering Constraints

● Be capable of running on a mid-range machine with 8 GB of Memory and a mid range processor
○ Needs to be trained on a GPU rack for the volume of data involved (lots of heap space)

● Usable by individuals with low technical skills
● Work on standard HTML websites (including SPAs)
● Must work within the existing Stanford NLP pipeline

Engineering Requirements

Corpus of tagged software documentation
● Collect a variety of forms (> 2 types) of software documentation in large quantities (> 25 of each)
● Ensure the data is usable for future works

Augmented Stanford NLP model for software documentation
● Improve accuracy of base Stanford NLP model when run against english within software documentation
● Expand tag set of base Stanford NLP to cover common elements of software documentation

○ Differentiation between standard tags and custom tags
● Java and Python APIs for the new model
● Pipeline needs to be highly accessible for future projects

Conclusion

Questions?

Email Addresses:

● Joseph Naberhaus - Project Lead (naberj@iastate.edu)
● Group Email - sdmay21-35@iastate.edu

