
SE/CprE 492 Final Report
Group 35

A Part of Speech Tagger for Software Documentation

Bring the power and flexibility of natural language processing to software
documentation.

Advisors
Ali Jannesari
Hung Phan

Team Members
Ahmad Alramahi - Lead Developer
Austin Boling - Meeting Facilitator
Joseph Naberhaus - Project Lead
Ekene Okeke - Report Coordinator

Ethan Ruchotzke - Documentation Manager
James Taylor - Linguistics SME

SE/CprE 492 - Final Report

Table of Contents
Table of Contents 1

Introduction 2

Project Design 2
Requirements 2
Constraints 3
Standards of Development 3
Operating Environment 3
System Structure 4

HTML Scraper & Training Documentation 4
New Software Document 4
HTML Parse to Plaintext 5
Tokenizer & Sentence Split 5
Manual & Auto Tagging 5
Train Model 5
Software Doc Model & Tagged Documentation 6

Security Concerns and Countermeasures 6
Development Process 7

Design References 7
Major Development Milestones 8
Technological Considerations 9

Testing 11
Integration Testing 11
Model Testing 11
Final Results 12

Appendix 1 13
Operational Manual 13

Appendix 2 17
Evolution of the Design and Other Versions 17

Appendix 3 18
Other Relevant Information 18

Finalized Set of Software Documentation PoS Tags 18

1

SE/CprE 492 - Final Report

Introduction

The purpose of this senior design project is to create a part of speech (POS) tagger which can
accept software documentation in the form of HTML files. These files are then fed into a training
pipeline which constructs a model based on them which can be used to tag future sets of
documentation. The main problem that we are trying to solve with a newly created POS tagger
is the issue that the current standard part of speech (POS) tagging solutions used in industry
are not able to tag natural language alongside code. Our solution to this problem was an
augmentation of the existing and commonly used Stanford NLP pipeline which is used for
conventional natural language processing (NLP). This final report will go into detail about the
structure of this product, as well as an explanation of the product from a usability standpoint.

Project Design

Requirements
Functional

● Input: Previously unseen, untagged software documentation in an HTML or XML-Like
format.

● Output: A tagged software document in NLP format. Both English tags and custom code
tags are included in the output tags.

● Pseudocode and English descriptions of code are taggable, and fit into the set of custom
tags.

Non-Functional
● Creation of a new, custom set of PoS tags which fit the abstract concepts contained in

code.
● Retrain the Stanford NLP model using tagged software documentation.
● Translate the manually tagged data into a format usable by the existing Stanford NLP

training pipeline.
● Buildup of a large corpus of tagged software documentation.

2

SE/CprE 492 - Final Report

Constraints
● The solution created must be built on top of, and directly integrated with the existing

standard Stanford NLP pipeline.
● The solution must be created and proven viable within two semesters.

○ The project must be usable for future projects; establishing a strong pipeline is a
necessity for continuation.

● The solution must be low, to no cost.
○ Stanford NLP is publicly available.
○ Utilization of university resources for the training of the model.

Standards of Development
● ISO-IEC 12207: Software Lifecycle

○ Influences on the design and longevity of this project.
● ISO-IEC 9001: Quality management

○ Influences on the quality and structure of this project.
● ECMA 494: JSON Format

○ Straightforward,easily serializable format used for inter-pipeline communication
and output.

Operating Environment
● Java 15 / Java SE 16
● Python 3.8 or above

○ Jnius - integration into java pipeline.
○ Beautifulsoup - easy parsing of XML / HTML files.

3

SE/CprE 492 - Final Report

System Structure
This system is a pipeline of components where files are scraped, parsed, tokenized, analyzed,
and tagged. As this is a complex process, the structure of a pipeline is beneficial, as it allows for
transparency between stages and straightforward debugging when the process goes wrong.

Figure 1: The design’s pipeline structure.

The pipeline is broken into 3 general sections, based on color above. The first section,
illustrated in yellow, is the preparatory portion of the pipeline, where data is parsed and
prepared for tagging. The red section is the training-only section, dedicated to training a model
for later tagging. The final section is green, and dedicated to tagging and outputting formatted
information from the tagged document. This is also where model testing is completed.

HTML Scraper & Training Documentation
The HTML scraper is the generator for our documentation used in the training portion of the
pipeline. Unlike its counterpart, the new software document, HTML scraping allows the pipeline
to gain a large number of documents from a single file of URLs. All scraped HTML is sent
forward through the pipeline into the plaintext conversion stage.

New Software Document
Unlike its counterpart, the HTML scraper, a new software document is sent through the pipeline
(generally) one at a time. In order to tag a document, it needs to be sent through the pipeline
manually, by injecting an HTML file into the plaintext converter.

4

SE/CprE 492 - Final Report

HTML Parse to Plaintext
This component is the first shared component in the pipeline, and is responsible for converting
HTML and XML documents (especially HTML) into an easily parsable plaintext format. Using a
list of code indicators, this component removes HTML tags which are specified by the filter,
removing useless data. It then converts applicable tags into <code> tags, which allows future
components to understand what is code and what is English. This is vital for the rest of the
pipeline, as it is extremely important that code taggers aren't used for tagging english, and vice
versa.

Tokenizer & Sentence Split
The tokenization component is responsible for splitting the large amount of plaintext into a
strongly structured document composed of sentences and tokens. At first this appears to be a
straightforward task, but a large amount of coordination must be done with the existing Stanford
NLP tokenizer to maintain consistency. In addition, understanding context in regards to code
and English blocks was vital to the construction of a consistent, reliable tokenizer.

Manual & Auto Tagging
The manual and auto-tagging portion of the pipeline is strictly used when training a new model.
During this portion, auto tagging software is run on the tokenized documents, creating a JSON
file with tagged english components and untagged code components. This cuts down the work
of manual tagging greatly. Any non-autotagged components are then saved in order to be
tagged using the manual tagger.

The manual tagger is responsible for creating a fast, straightforward environment for quickly
applying tags to untagged code elements. For our project, this was done by our group, and was
the slowest part of development. Unlike large companies, we could only reasonably manually
tag 100 articles, leaving us with a small amount of data for training later on. In addition to the
manual tagger, other tools were created for ease of manual tagging, like the patcher, which
tagged all tokens of a certain type with a certain tag.

Train Model
The most important stage in the pipeline is the actual training of the model, which is actually
straightforward. As our tagged data resides in a JSON format, it needs to be converted into an
NLP format which the Stanford NLP pipeline is capable of processing. It then is fed into the
training pipeline provided by Stanford, and it generates a file containing the model information
usable by the Stanford NLP tagger.

5

SE/CprE 492 - Final Report

Software Doc Model & Tagged Documentation
The final stage of the pipeline is the output and tagging stage where the actual pipeline model is
used to evaluate the software document passed through the pipeline. When in training mode,
this portion of the pipeline is used for grading and post-training evaluation. While in tagging
mode, this portion of the pipeline is used to apply the trained model to the passed in software
document. The output of this stage can be in NLP-XML format or in JSON format, and
converters exist for both depending on the needs of the consumer.

Security Concerns and Countermeasures
Currently, cybersecurity concerns and countermeasures are a non-factor for our project. Our
project is an offline, parts-of-speech tagging tool with no sensitive data or structures to hide.
There are also no consequences of security breaches that are not already available or
performable. The only part of our project that could become compromised, or have an impact if
it is compromised, is the Stanford NLP at its core. However, the Stanford NLP is already publicly
available and as such any security risks to breach it, if there are any and have any significant
consequences, have no use of being negated.

6

SE/CprE 492 - Final Report

Development Process

Design References
In figure 2 below, you can see the use case diagram that has motivated our design decisions.
It’s important to realize the two component nature of our project. The model itself will be usable
by any member of the general public that knows basic coding. However, there will also be a set
of tools made specifically for training new versions of the model that only experienced
developers will be capable of using.

Figure 2: A use case diagram for this project

Completion of the use case for general users was relatively trivial. This is because the Stanford
NLP libraries contain APIs that already complete them. For more information on the architecture
of the POS models consult the documentation available on the Stanford NLP website.
The bulk of development effort went into the use cases for developers. For this we implemented
a pipeline to transform software documentation into a tagged corpus of examples. We then used
these to train a CRF model. In figure 3 below, you can see the planned architecture for this
pipeline.

Figure 3: The design pipeline for training the model

7

SE/CprE 492 - Final Report

Major Development Milestones
Below is the development process used throughout both semesters of work put into this project.
Generally, this format was followed closely, with lots of development taking place in the
pre-iterative phases.

Milestone 1: Determine Types of Software Documentation
● Find multiple examples of software documentation (English, and code)
● Categorize software documentation based on similar qualities
● Generate at least 2 categories of software documentation

Milestone 2: Collect Software Documentation
● Find at multiple examples of software documentation in each category
● Design a Web Scraper to take software documentation and output it in an easily

readable format
● Output the raw HTML data
● Output the documentation segments

Milestone 3: Clean and Pre-process Software Documentation
● Write a parser to generate “blocked” code based on whether the data is in monospace

font or not, also based around HTML tags.
● “Blocked” code distinguishes between code snippets and English text
● Take scraped documentation and generate treebanks based on the data.

Milestone 4: Complete initial analysis of Software Documentation
● Pass the raw software documentation through the existing English NLP pipeline
● Analyze the data to find common errors which need to be fixed
● Find common errors in English documentation
● Analyze behavior of NLP on code snippets

Milestone 5: Development and Testing of System Pipeline
● Establish a stable codebase for each component of the pipeline
● Complete component based testing for each component
● Iterate on a component-based basis until all components are functional

Milestone 6: Strengthen and Deepen Tags Related to Software
● Analyze common errors to determine additional tags which may benefit POS analysis
● Come up with use cases for the new tags, along with several examples of their usage
● Develop a complete list of tags related explicitly to software tagging needs based on

code.
Milestone 7: Manually Tag Documentation with New Tags

● Test out new tags using the corpus of software documentation
● Iterate on tags as necessary until a good model is found
● Manually tag all software documentation with new tags
● Initially tag documentation with Stanford NLP
● Correct Stanford NLP errors using manual tagging

8

SE/CprE 492 - Final Report

Milestone 8: Train a new Conditional Random Fields Model
● Put together corpus of training data
● Use Treebank format to convert raw documentation data
● Use Stanford’s CoreNLP library to train a new Conditional Random Fields (CRF) Model
● This stage will be iterative as necessary

Milestone 9: Acceptance Testing
● Perform acceptance and accuracy testing on a separate set of data from the training

data
● Does the model conform to the accuracy standards set out earlier? If not, revert to

milestone 5 and iterate.
Milestone 10: Reporting

● Compile data on accuracy of tested data and prepare reporting data.

Technological Considerations
Currently, in our project there are a couple areas where technology considerations are
significant due to the availability of choice. These two areas are: the language used to
implement the PoS tagger and the resources used to train the PoS tagger.

Language Used:
Java - Java is the first of two languages available to us which have been used by others to
implement the Stanford NLP. The Java version is implemented using the Stanford CoreNLP and
is a low level interface to the trained model. It was discovered during our initial testing that the
Java version has a slightly higher accuracy compared to the Python version, but if run
incorrectly could take up a very large amount of system resources.

Strengths: Typically takes a lower amount of resources than Python. Higher accuracy tagging.

Weaknesses: Could take a large amount of resources to run.

Trade-offs: Low-level interface increases complexity but also increases control.

Python - Python is the second of two languages available to us which have been used by others
to implement the Stanford NLP. The Python version is implemented using Stanza and is a high
level interface to the trained model. The Python version runs a local Java server and interfaces
with that instead of running the PoS tagger natively in Python. Due to this the Python version
uses more resources and does not perform as well as the Java version.

Strengths: Easy to use.

Weaknesses: Takes a larger amount of resources than the Java version to run. Not the native
language of the Stanford NLP.
Trade-offs: Trades complexity for ease of use compared to Java.

9

SE/CprE 492 - Final Report

Training Method:
Developer’s Machines - Training the model(s) on the developers’ machines utilizes resources
that the developers already possess. The developers do not possess the most powerful
hardware to accelerate the training times. Due to this, as the model’s training data grows in size
it quickly becomes apparent that more powerful hardware would be highly beneficial.

Strengths: Utilize resources already owned.

Weaknesses: Could take a significant amount of time to train. Training the model with a growing
dataset could potentially easily surpass the technical capabilities of the developer’s machines.

Trade-offs: Utilizing the developers’ machines would trade training time and performance for
ease of use/training and accessibility.

HPC GPU Racks and Clusters - Utilizing GPU racks and clusters specifically designed to
provide high performance and significant computing power (particularly for training models)
would be a great boon to the project. Utilizing these resources would offload training
responsibilities from our own machines to university machines, which are much more powerful
and could complete training on a much larger set of data in a smaller amount of time.

Strengths: Faster training time on larger data sets.

Weaknesses: Working with machines that are not our own.

Trade-offs: Utilizing GPU racks and clusters would trade off accessibility of training, although
marginally, for more performant training and potentially runs of the program.

Solutions:
Given the above analyses of the technologies to choose from, we have chosen to primarily
focus on the Java version of the Stanford NLP (CoreNLP) and utilize GPU racks and clusters to
train our models. However, we ended up using our own machines to train the models often, as
our dataset was small enough that it became more convenient to use our own machines.

10

SE/CprE 492 - Final Report

Testing
The testing strategy for this project utilized many different phases based on what the focus of
work was at the time of testing. The most testing emphasis was placed on the components of
the pipeline, as this project needed to be future-project compatible, and having a working
pipeline was vital to this goal.

Integration Testing
The most important aspect of the testing regime of this project was integration testing
throughout the pipeline components. As the pipeline was vital not just for our group, but any
future groups on this project, integration testing was required. We made several design
decisions to ensure integration testing would be easy, most notably the usage of a pipelined
design with transparent connections. Each component’s inputs and outputs were direct and
single-streamed, so any output could be grabbed and read at any time.

To do integration testing on a component, we moved from front to back through the pipeline. For
each component, we supplied the expected input for the component, and manually verified the
results of the components operation. While manual testing is typically inappropriate, the
dynamic nature of our data resulted in a system in which writing a generic testing platform would
have been more work than the components themselves took.

Integration testing was by far the most taxing portion of our testing regime. Each component
was developed in a somewhat staggered fashion in order to allow the group to split work
between programming, tagging, and theoretical model development in a fair way. Each
component of the pipeline was iterated on in an agile fashion, with testing being common and
the driving factor behind iteration. Once integration testing was complete on each component,
the pipeline worked as expected, as the transparent inputs and outputs allowed for extreme
flexibility in testing.

Model Testing
Once integration testing was completed on the pipeline it became possible to actually generate
and test models. Because of the nature of this portion of the project, iterations were important,
but less viable than previously. Lots of debugging and investigation had to go into the building of
a model, and analytics tools were created as needed to make debugging results easier.

At the end, model testing was accomplished using a testing module which compared two JSON
representations of tagged data, one manually tagged and one tagged by the model being
tested. The testing module then compiled results into incorrectly tagged and correctly tagged
lists, which were then categorized using a series of dictionaries to make finding causes of
incorrect tags easier. An example of our results object is displayed below in figure 4.

11

SE/CprE 492 - Final Report

Figure 4: A snippet of results for the final iteration of the model.

Final Results
The final results for our model’s efficacy is a 53.61% accuracy tagging rate. The final test for this
model was done using 2606 separate tags, with 1209 tags being missed. In terms of files, this is
equivalent to 80 files being used for training and 20 files being used for testing.
While initially an upsetting result, upon more investigation we came to realize that a 53%
accuracy rate is not bad for the limited dataset we used.

Our group had limited time, and the most time intensive portion of the project was the manual
tagging of data for training. Because of the time constraint, only 100 files were tagged in total.
This is an extremely small dataset compared to the Stanford NLP dataset, which an entire team
of linguists was responsible for putting together. Our model performs far better than random
selection of tags, so it is our belief that a future group could simply compile more training data to
improve the efficacy of the model in the future.

12

SE/CprE 492 - Final Report

Appendix 1

Operational Manual
The operation of the pipeline is a multi-step process with the usage of different languages and
environments. This short manual will hopefully show you how to operate each component and
how to analyze the inputs and outputs of the pipeline components.

1. Generate a list of URLs you would like to process.
The first major component of running the pipeline is organizing and gathering the data
you wish to use. While we used the web for finding data, any HTML or SPA page
accessible by URL will work here. Simply compile all of these URLs into a text
document, delimited by newlines. An example of this file is shown below.

Figure 5: A portion of the URL file for our javadoc scraping

2. Run the UniversalHTMLParser on the URLs.
The UniversalHTML parser is a python application which
parses and gathers data from the URLs from the file,
processes the HTML into a plaintext format, and then tokenizes
and converts the data into a JSON format. The UniversalHTML
parser is truly a large, multi-purpose component.

To run the UniversalHTML parser, you need to install the jnius
package in python which allows you to run Java code from a
python environment. In addition, you will need to set a couple
of options depending on your usage of the HTML parser.

First, you need to change the rules file (also located in the
same directory) to use the conversion rules you wish to use
when converting HTML to plaintext. The default rules file is
fairly general-purpose, and works well for Javadoc and
Leetcode articles.
Figure 6(left) : The final output of the UniversalHTMLParser

13

SE/CprE 492 - Final Report

Figure 7(above): The intermediate tokenized data from the webpage

Next, you need to direct the HTML parser towards the output and tokenizer directories.
These are hardcoded in the main.py file in the main
directory. Output will write the tokenized JSON files to that
directory. The python file must also have access to the
compiled tokenizer class file in order to tokenize the data
automatically.

Simply run this file using python to generate a set of
JSON formatted files which can then be passed through
the rest of the pipeline.

3. Autotag English and Simple code data.
Now that we have JSON files, we need to automatically
tag as much data as possible using the stanford NLP
english model and our own simple tagging rules. The
AutoTagging directory contains the java code necessary
to run the autotagger, along with a markdown file with
excellent documentation on how to run the code. Once
autotagging is complete, the JSON files will be
populated with partially tagged data. It is now either the
role of the model (if tagging) or the developer (if training) to fill in the rest of the missing
tags.

4. Manually Tag Data if you are training a model.
If you are attempting to create your own model, you will need to manually tag your
dataset using the application in the ManualTagger directory. The manual tagger is a java
gui application capable of streamlining the manual tagging process. Once again, there is
an excellent markdown file in the root directory which will give you step by step
instructions on how to set up and run the manual tagger.

Once the tagger is running, you simply need to direct it towards a directory of JSON files
with missing tags. You will then be prompted for each token to manually give it a tag.
Other utilities also exist within the application, like listing the number of tags remaining to
tag, automatically tagging any tokens which match a string with a tag, and stateful

14

SE/CprE 492 - Final Report

tagging (being able to stop and come back without losing progress).

Figure 9: The GUI of the manual tagger. For this example, a “boolean” token is being tagged as a
“<typen>” (typename)

5. Train the NLP model using tagged data.
To train the model you will need to navigate to the NLPModel directory of the project. As
with other modules so far, there is a markdown file in this directory which will give you
much more detailed information about how to run and setup this portion of the pipeline.

To train a model, you will need
to call the “train” function from
the “TrainModel” class. This
function requires four
arguments. The first and third
are the input and output
directories. THe input directory
should contain the tagged JSON
files needed for training, and the
output directory will contain the
JSON files that were used to
contribute to the model being
trained. The second argument is
the model filepath, so that training can be done
additively. Finally, the function requires a temporary
directory for any temporary files generated during training. Once this function is run, it
will create a file in the model file path which contains the newly trained model.

6. Run the NLP model on the JSON files you wish to tag.
If you are interested in tagging a document, you need to use the application in the
NLPModel directory. Once again, if you are interested in a more in-depth guide, there is
an overview markdown document located in the root of this directory which goes over
how to operate the applications in this directory.

To run the NLP model, you simply need to use the provided stanford NLP interface, while
specifying our model as the primary model for usage. To make this process even easier,
a “TagDocs” function has been provided in the “Tagging” directory of the project. The

15

SE/CprE 492 - Final Report

output of the tagger will be a JSON file which has been completely tagged. If you would
rather have the file in NLP format (XML tags), you can simply remove the conversion.

7. Test the NLP tagged output.
The final portion of the pipeline is only useful if you are evaluating a model’s tagging
efficacy. Once again, in the NLPModel directory a markdown file is available with better
instructions on how to run the testing module.

The testing module, located in “Testing”, essentially does an element-by-element
comparison between two parallel JSON files, one “correct” and one “test subject”. Any
differences in comparison are cumulatively documented and built up for analysis in the
“TestResults” class, which is returned from the “Test” function call. This “TestResults”
object contains information about the number of missed tags, the types of misses (an
ordered list of missed tags based on their number of misses), the actual misses (what
tag was used incorrectly), and the overall accuracy of the system. This file should help
with any debugging which needs to be done to improve system accuracy.

16

SE/CprE 492 - Final Report

Appendix 2

Evolution of the Design and Other Versions
Semester 1:Project Design and Main Focus
The first semester was mostly focused on understanding the Standard POS Tagger, collecting
relevant software documentation and coming up with our own cleaner version of the
documentation for the project. We ran the current standard Stanford NLP tagger and analyzed it
with the purpose of understanding how it works. Analyzing the data it produced helped us find
common errors in the English documentation and examine the behaviour of NLP on code
snippets. This phase saw the system as a black box, with more or less a single interface,
however our project developed into a stronger, more pipelined model as the second semester
progressed.

We were able to come up with a the following
● New Tag List with several examples of their usage
● a modified pipeline
● a customizable web scraper
● a customizable HTML parser

Semester 2:Project Design and Main Focus
The second semester was mostly focused on the implementation of Methods of the New
POSTagger. This includes completing the data gathering pipeline that is the tokenizer and the
interleaving of the new components within the pipeline. The remaining months of this semester
were focused on evaluating the new POS Tagger and identifying any possible flaws that might
be present. Utilizing what was gathered when identifying the flaws to be able to refine the new
model. This involved a large amount of iteration and integration testing, which refined and
strengthened our pipeline model from the first semester.

17

SE/CprE 492 - Final Report

Appendix 3

Other Relevant Information

Finalized Set of Software Documentation PoS Tags
This set is our own new tags and excludes the pre-existing standard set of English tags from the
Penn Treebank. The Penn Treebank tags are still used as our English tags for this project.

Tag Description Example

<am> Access Modifier public static void main()

<?st> Conditional Statement if (true) { }
int i = true ? 4 : 2;

<;> End of statement String hello = “world”;

<type> Language type class Color
Object

<typen> Type name String hello = “world”
class Color

<{> Open block if (true) { }

<}> Close block if (true) { }

<(> Open parenthesis (in code) if (true) { }

<)> Close parenthesis (in code) if (true) { }

<[> Open bracket new String[] {“hello”, “world”};

<]> Close bracket new String[] {“hello”, “world”};

<,> Comma (in code) new String[] {“hello”, “world};

<var> A variable in code String hello = “world”;

<func> A function/method public static void main()

<=> Gets String hello = “world”;

<par> Parameter of function/method public test(String hello)
function(a)

<return> Return statement return hello;

18

SE/CprE 492 - Final Report

<loop> Iterative loop while (true) { }

<value> Value int i = 42;

<”> Double quotes String hello = “world”;

<’> Single quotes char c = ‘a’;

<inherit> Inheritance public class foo extends bar
public class foo implements bar

<op_mat> Mathematical Operator int i = ((2 + 2) - ((4 * 3) / 6) % 3);
expr++
!expr
a&b

<op_rel> Relational Operator if(a < b) { }

<op_log> Logical Operator if(a || (b && c)) { }

<op_gets> Assignment Operator int a += 7;

<.> Dot (in code) foo.bar();

<error> Error or exception handling
keywords

try {
...
} catch (Exception ex) {
...
}

<generic_type> < or > around a generic Hashmap < String, LongAdder >

<new> instantiation new AbstractMap

<comment> Start or end of comment // this is a comment

<cf> Control flow break; or continue;

19

